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Abstract

In CFD computations, discretization or truncation errors should be small providing an acceptable level of accuracy. In
this paper, an extension is made of the recently proposed LES formalism based on sampling operators. It is shown that the
sampling-based dynamic procedure, in combination with an appropriate truncation error model, can be used as a technique
to increase the numerical accuracy of a discretization. The technique is resemblant to the well-known Richardson extrap-
olation. The procedure is tested on a 1D convection–diffusion equation and a 2D lid-driven cavity at Re = 400, using a
finite difference method. Promising results are found.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical discretization errors arise due to the finite representation of the derivative operators on the
computational grid. The accuracy of a simulation depends partially on the ability to control these discreti-
zation errors. It is known that these errors can be quite large for high wavenumbers, e.g. appearing in steep
gradients or small vortices. Especially in large-eddy simulation (LES) of turbulent flows, the smallest
resolved scales of the flow still contain a significant amount of energy, and sometimes for low-order discret-
ization schemes, the numerical errors can even become larger than the subgrid term in LES [1–3]. Therefore,
discretization errors should be small enough providing an acceptable level of accuracy. Implementing high-
order methods or reducing the error by using fine meshes are often computationally prohibitive for CFD
simulations in complex geometries. Therefore, there is much interest in improving accuracy while avoiding
high computational cost.

Recently, a new sampling formalism for large eddy simulation was proposed by Winckelmans et al. [4,5],
Debliquy et al. [6] and Knaepen et al. [7]. It is a projection method for Navier–Stokes equations from contin-
uum space to a discrete space, using a sampling operator instead of a filter operator. By thinking in terms of
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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such a sampling formalism, the non-linearity in the momentum equations does not result in the generation of
subgrid stresses, as the sampling operator commutes with the non-linear terms. However, since the sampling
operator is not commutative with spatial derivatives, a closure term appears which represents the loss of infor-
mation due to the projection on a discrete mesh. In [4–7], a Smagorinsky model was proposed that, by relying
on a so-called generalized dynamic procedure uses information from two different grid resolutions, succeeded
in accounting for the sampling commutation errors.

This new point of view has led us to further investigate the ability of this sampling-based dynamic proce-
dure, in combination with an appropriate model for the truncation error, to obtain higher-order numerical
accuracy. Two possible model families are presented: exact truncation error models and Smagorinsky-like
models. The use of generalized dynamic procedure to increase numerical accuracy by comparing solutions
on different grid resolutions is reminiscent of the Richardson extrapolation. We show that Richardson extrap-
olation is a special formulation of the sampling-based generalized dynamic procedure.

The organization of the paper is as follows. First we introduce the sampling formalism in a finite difference
context. Then, the generalized dynamic procedure for truncation error modelling is explained and analyzed,
and its relation to Richardson extrapolation discussed. We propose two different kinds of models for the trun-
cation error of the Navier–Stokes equations, including two Smagorinsky-like models. Finally, in order to eval-
uate the numerical qualities of the proposed method, without any turbulence modelling ambiguities, we test
the concept on a 1D convection–diffusion equation and a 2D laminar lid-driven cavity at Re = 400.
2. The sampling formalism

Consider the continuity equation and the Navier–Stokes equations, for the vector field~uð~x; tÞ and the pres-
sure field pð~x; tÞ of an incompressible fluid (q = 1) in Rn, n 2 {1,2,3}
oui

oxi
¼ 0 ð1Þ

oui

ot
þ uj

oui

oxj
¼ � op

oxi
þ m

o
2ui

ox2
j

ð2Þ
Projecting the equations from a continuum physical domain X � Rn to a corresponding discrete physical do-
main XD1 ¼ f~x1; . . . ;~xNg,~xl 2 X (with N the number of grid points, representing the grid with grid spacing D1),
requires the definition of an appropriate projection operator.

Hence, we define the sampling operator SD1 , which operates between X and XD1 . This sampling operator
SD1 is idempotent, and commutative with the product of the non-linear terms.
SD1 �SD1 � ½/� ¼ SD1 � ½/� ð3Þ
SD1 � ½/ � w� ¼ SD1 � ½/� �SD1 � ½w� ð4Þ
However, SD1 does not commute with spatial derivatives as they cannot be evaluated at an infinitesimal inter-
val �. For any realistic discrete mesh � > 0 and thus the exact derivative cannot be obtained:
d/
dx
6¼ lim

D!�

D/
Dx
When we use the notation SD1 � ui ¼ �ui and SD1 � o ¼ d, applying SD1 to the continuity equation (1) and the
Navier–Stokes equations (2) gives
d�ui

dxi
¼ PD1 ð5Þ

o�ui

ot
þ �uj

d�ui

dxj
¼ � d�p

dxi
þ m

d2�ui

dx2
j
þ RD1

i ð6Þ
(7) and (8) are the truncation errors due to the non-commutativity of the operator SD1 with the spatial deriv-
atives. These truncation terms have the basic form
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Given a discretization scheme for which one can define a sampling operator that satisfies (3) and (4), the exact
form for the truncation errors (7) and (8) can be obtained from Taylor series expansion, provided that the field
is sufficiently smooth on the grid. We choose the discretization scheme a priori to be second-order central finite
difference approximation for both first- and second-order partial derivatives. The grid XD1 ¼ f~x1; . . . ;~xNg,
~xl 2 X has a uniform spacing Dxi in each spatial direction. The finite difference approximations of the deriv-
atives of a scalar ui with respect to xj in a node xj ¼ xl

j are
d�ui

dxj
¼

�uiðxlþ1
j Þ � �uiðxl�1

j Þ
2Dxj

ð9Þ
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Dx2
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Then the Taylor series expansion of the continuous derivative can be written as
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Substituting the previous expressions in the continuity equation (1) and the Navier–Stokes equations (2)
(which is equivalent to applying the sample operator SD1 ), leads to the analytical expressions for the trunca-
tion terms (7) and (8):
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Our objective is to obtain a model that increases the accuracy of the second-order approximations, by using
information from two different grid resolutions, in the philosophy of the generalized sampling-based dynamic
procedure.

3. The generalized dynamic procedure

3.1. Concept

The original dynamic procedure, based on the Germano [8] identity can be extended to a more general
approach in the sampling context. Note that Jeanmart and Winckelmans [9] already suggested the use of a
sampling operator in the dynamic procedure. The same terminology and notations as in Section (2) are used,
which is analogous to the notation of Knaepen et al. [7]. Projection is done of the equations from a continuum
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physical domain X � Rn to two corresponding discrete physical domains XD1 ¼ f~x1; . . . ;~xN1
g, ~xl 2 X, and

XD2 ¼ f~x1; . . . ;~xN2
g,~xl 2 X with N2 < N1 (in practice, XD2 � XD1 ). This corresponds with the sampling opera-

tors SD1 and SD2 , projecting respectively X! XD1 and X! XD2 . SD2 also projects XD1 ! XD2 , since
SD2 �SD1 � ½/� ¼ SD2 � ½/� ð15Þ
We keep the notation SD1 � ui ¼ �ui and introduce SD2 � ui ¼ ~ui ¼ e�ui. We also keep the same notation for the
discrete derivative operator SD2 � o ¼ d. Applying the operator SD1 on the continuity equation (1) and Na-
vier–Stokes equations (2) leads to
0 ¼ CD1ð�uiÞ þPD1 ¼ � d�ui

dxi
þPD1 ð16Þ
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ot
¼ND1

i �uið Þ þ RD1
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dxj
� d�p
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þ m

d2�ui

dx2
j
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i ð17Þ
We will refer to CD1 and ND1
i as the continuity and Navier–Stokes operators. Similarly, applying SD2 to the

continuous set (1) and (2) gives
0 ¼ CD2ð~uiÞ þPD2 ¼ � d~ui

dxi
þPD2 ð18Þ

o~ui
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¼ND2
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Ideally, the latter set should also be obtained by applying the sampling operator SD2 to the first set of equa-
tions (16) and (17) giving
0 ¼ SD2 � CD1ð�uiÞ þSD2 �PD1 ð20Þ
o~ui

ot
¼ SD2 �ND1

i ð�uiÞ þSD2 � RD1
i ð21Þ
Consistency between formulations (18), (19) and (20), (21) imposes the following relations:
SD2 � CD1ð�uiÞ � CD2ð~uiÞ ¼ PD2 �SD2 �PD1 ð22Þ
SD2 �ND1

i ð�uiÞ �ND2
i ð~uiÞ ¼ RD2

i �SD2 � RD1
i ð23Þ
These relations explicitly express the commutation errors made by the projection XD1 ! XD2 . The left-hand
sides of (22) and (23) are scalar level and vector level equivalents of the Germano identity [8], respectively.
They can be determined in terms of the resolved velocity �ui, since SD2 � ui ¼ ~ui ¼ e�ui, and play the role of
the Leonard scalar (22) or the Leonard vector (23).

We now suppose that models are adopted for both truncation errors PD1 and RD1
i which have the basic

forms
PD1 ¼ Cpmp;D1 ð24Þ
RD1

i ¼ Cr
i mr;D1

i ð25Þ
and analogously for the test-level D2. Using a similar terminology as in the classic Germano dynamic proce-
dure [8], the expressions (22) and (23) can then be written as
Lp ¼ CpMp ð26Þ
Lr

i ¼ Cr
i M

r
i ð27Þ
in which the Leonard terms L and the model terms M read
Lp ¼ SD2 � CD1ð�uiÞ � CD2ð~uiÞ ð28Þ
Lr

i ¼ SD2 �ND1
i ð�uiÞ �ND2

i ð~uiÞ ð29Þ



D. Fauconnier et al. / Journal of Computational Physics 224 (2007) 1095–1123 1099
Mp ¼ mp;D2 �SD2 � mp;D1 ð30Þ
Mr

i ¼ mr;D2
i �SD2 � mr;D1

i ð31Þ
The Leonard terms are thus resemblant to the expressions (7) and (8). Explicitly, they are written as
Lp ¼
fd�ui

dxi
� de�ui

dxi
ð32Þ

Lr
i ¼ e�uj

fd�ui

dxj
� de�ui

dxj

 !
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dxi

 !
� m

gd2�ui

dx2
j
� d2e�ui

dx2
j

 !
ð33Þ
Similar expressions are obtained for the model terms. In the approach of e.g. Knaepen et al. [7], a single field Cr

was used to model the error of the separate momentum equations, leading to a least-square optimization proce-
dure as a compromise between the three independent conditions (27). Here we propose separate fields Cr

i for the
separate equations, for which the optimal parameter can be determined from every independent condition (27).

For the computations presented in this paper, it was often necessary to filter the quantities before calculat-
ing the scalar fields Cp and Cr

i , to remove undesirable high frequency pollution or singularities, leading to
instability of the solution. We use the least-square method
Cp ¼ hL
pMpi

hMpMpi ð34Þ

Cr
i ¼
hLr

i M
r
i i

hMr
i M

r
i i

ð35Þ
in which ÆÆæ denotes a smoothing filter, such as a local moving average or a global average. For the latter aver-
aging, constant fields are obtained. Cp and Cr

i can be positive or negative, depending on the adopted discreti-
zation scheme. Therefore, it was sometimes necessary to apply clipping to avoid excessive negative values of
Cp and Cr

i causing instability of the solution. Finally, Cp and Cr
i , which are calculated on the coarse grid, are

interpolated to the fine grid using a piecewise cubic Hermite interpolation. A fully embedded test grid is applied.
3.2. Relationship to Richardson extrapolation

We use the notation dnu
dxn

��D for the finite difference approximation of the nth-order derivative on a grid with
grid spacing D. Consider the Taylor series expansion of the nth-order derivative, n = 0,1,2, . . ., for a kth-order
central discretization scheme (k = 2,4,6, . . .)
onu
oxn
ðxÞ ¼ dn�u

dxn

����D þ ckD
k okþnu
oxkþn

þ OðDkþ2Þ ð36Þ

onu
oxn

xð Þ ¼ dn~u
dxn

����2D

þ ckð2DÞk okþnu
oxkþn

þ OðDkþ2Þ ð37Þ
in which the coefficients ck are grid independent. We now assume that the leading order truncation term is an
adequate model for the complete truncation error. Discretization of this term and applying the generalized
dynamic procedure, without averaging, leads to a coefficient ck
ck ¼
dn~u
dxn

��2D � dn�u
dxn

��D
Dkdkþn�u

dxkþn

���D � 2Dð Þkdkþn~u
dxkþn

���2D ð38Þ
substitution of which in (36) finally results in
onu
oxn
ðxÞ �

2k dn�u
dxn

��Ddkþn~u
dxkþn

���2D

� dn~u
dxn

��2Ddkþn�u
dxkþn

���D
2k dkþn~u

dxkþn

���2D

� dkþn�u
dxkþn

���D ð39Þ
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This non-linear expression is closely related to Richardson extrapolation. Under the assumption
dkþn~u
dxkþn

����2D

� dkþn�u
dxkþn

����D � o
kþnu

oxkþn
ð40Þ
the general formula for Richardson extrapolation is obtained
o
nu

oxn
ðxÞ �

2kdn�u
dxn

��D � dn~u
dxn

��2D

2k � 1
þ OðDkþ2Þ ð41Þ
which is fully equivalent with a (k + 2)th-order accurate central scheme for the nth derivative. We will call
expression (41) the implicit or differential Richardson extrapolation.

Although (41) is the general expression, Richardson extrapolation is more familiar for n = 0
uðxÞ � 2k�ujD � ~uj2D

2k � 1
þ OðDkþ2Þ ð42Þ
In this explicit or classical form, the Richardson extrapolation method needs the solution to be computed on
two different grids, which is demanding in computational effort. In the differential form, the field u(x) does not
necessarily have to be computed twice, as the coarse grid can be obtained from sampling the fine-grid field.
This allows to obtain higher-order discretizations for derivatives. For example, the fourth-order central finite
difference scheme can be constructed from the second-order central scheme on two different grids.

Traditionally, the classical Richardson extrapolation is the most common one. It is used as a post-processor
to two solutions on two different grids with no reference to the codes, algorithms or governing equations that
produced the solutions [10]. The differential Richardson extrapolation is rather rare. However, a similar
approach is used in a finite volume context by Verstappen et al. [11,12]. The momentum equations are then
physically integrated over both the original control volumes of the mesh and three times larger control vol-
umes corresponding to a three times coarser mesh.

A major drawback of the classical Richardson extrapolation is that it does not preserve conservation.
This is due to the more fundamental problem that the extrapolated values are no longer internally consis-
tent, since they do not satisfy a system of finite difference approximations [13]. However, this can be rem-
edied by using the differential form or the dynamic procedure, as they are part of the system of finite
difference equations.
3.3. Single-wave Fourier analysis

For further analysis of expression (39), and the implications of approximation (40), we would like to per-
form a Fourier analysis on the kth-order accurate nth-order derivative. Because expression (39) is non-linear,
it should be linearized first in order to perform a Fourier analysis which is valid for an arbitrary field contain-
ing a spectrum of wavenumbers. However, for reasons of simplicity we first consider a single-wave Fourier
analysis of the non-linear expression although we emphasize that the conclusions cannot be extrapolated
straightforwardly to a more general arbitrary field as superposition cannot be applied to a non-linear expres-
sion. However, in the next section, we will perform a multiple-wave analysis.

We adopt Taylor series expansion on both the fine and the coarse grid, and we introduce a blending factor f
in order to switch between the dynamic procedure (39) (f = 1) and Richardson extrapolation (41) (f = 0), and
to investigate intermediate behaviour:
onu
oxn
ðxÞ ¼ dn�u

dxn

����D þ ckD
kd

kþn�u
dxkþn

����D ð43Þ

onu
oxn
ðxÞ ¼ dn~u

dxn

����2D

þ ck 2Dð Þk f
dkþn~u
dxkþn

����2D

þ ð1� f Þd
kþn�u

dxkþn

����D
 !

ð44Þ
for which the dynamic procedure results in
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ck ¼
dn�u
dxn

��D � dn~u
dxn

��2D

ð1� 2kÞDkdkþn�u
dxkþn

���D � 2kDkf dkþn~u
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���2D

� dkþn�u
dxkþn

���D� � ð45Þ
The resulting coefficient can only be meaningfull for values of f within the range [0, 1], however it can be easily
verified that for arbitrary large values of f, (49) reduces to kth-order accuracy as limf!1ck = 0. From Rich-
ardson extrapolation we learn that the denominator of (45) is proportional to the (k + n)th-order derivative,
or
dn�u
dxn

����D � dn~u
dxn

����2D

¼ c	k 1� 2k� �
Dkd

kþn�u
dxkþn

����D ð46Þ
in which c	k is then a known constant from the Taylor series expansion. Substitution into expression (45) and
rearranging results in
ck ¼ c	k
1

1� 2k f
ð1�2kÞ

dkþn~u
dxkþn

��2D
�dkþn�u

dxkþn

��D
dkþn�u
dxkþn

��D
 ! ð47Þ

ck � c	k
1

1� OðDkÞ
ð48Þ
This clearly shows that the non-linearity which appears in the final expression is rather weak as it is of order
OðDkÞ. Because of this, it can be expected that a single-wave Fourier analysis should give some representative
results.

Substitution of expression (49) into the fine-grid Taylor series (43) leads to the final expression
onu
oxn
ðxÞ ¼ dn�u

dxn

����D þ c	k

1� 2k f
ð1�2kÞ

dkþn~u
dxkþn

��2D
�dkþn�u

dxkþn

��D
dkþn�u
dxkþn

��D
 !Dkd

kþn�u
dxkþn

����D ð49Þ
In Fourier space, the nth derivative can be written as
F
dn�u
dxn

� �
¼ ðij0ÞnFð�uÞ ð50Þ
with j 0 the modified wavenumber. The modified wavenumber represents here the amplitude error of the dis-
crete derivatives for a single wave with relative wavenumber j

jmax
. Modified wavenumbers and the corre-

sponding absolute errors of du
dx and d2u

dx2 are given in Figs. 1 and 2 for a second-, fourth-, sixth-, eighth- and
10th-order central scheme, and also for the expression (49). The latter is given at values of
f ¼ 1; 1

2
; 1

3
; 1

4
; 1

5
; 1

10
. Since, an exact fourth-order scheme is obtained with the differential Richardson extrapo-

lation (f = 0), their modified wavenumbers are equal. The full dynamic procedure with f = 1 leads to a sin-
gularity for approximately j

jmax
� 0:38, as the denominator in expression (49) becomes zero (Fig. 1b).

However, by decreasing the blending factor, the spectral behaviour improves significantly for both du
dx and

d2u
dx2. It can be seen from both graphs, that an optimum can be obtained within the range f 2 ½1

3
; 1

5
�. Closer

inspection of the error given in the logarithmic graph, shows that for f ¼ 1
5
, the overall accuracy of the dy-

namic procedure is close to sixth order. Fig. 1d shows that for the lower part of the wavenumber space, the
accuracy is then sixth order, whereas at higher wavenumbers the accuracy drops to approximately fifth or-
der. Increasing the blending factor to e.g., f ¼ 1

4
or even f ¼ 1

3
gives better accuracy for high wavenumbers

but at the cost of the low wavenumbers, which still obtain at least fourth order. This may be interesting for
large-eddy simulation, where the smallest scales could be resolved more accurately, whereas the largest scales
still reach more than fourth-order accuracy. However, in laminar flows, where the highest wavenumber is
supposed to be a few times smaller than the grid-cutoff, a blending factor f ¼ 1

5
should be advantageous.
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Again, we emphasize that the observations based on a single wave cannot be extended straightforwardly to
the analysis fo the non-linear scheme. Nevertheless, we still expect them to be more or less indicative for a
more arbitrary field containing multiple wavenumbers. This will be confirmed in the following paragraph.

3.4. Multiple-wave Fourier analysis

To investigate further the role of the weak non-linearity in the expressions above, a Fourier analysis con-
sidering multiple waves is necessary. Here, we restrict ourself to a double-wave analysis. Consider the double-
wave scalar field
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uðj; l; xÞ ¼ eðijxÞ þ eðilxÞ ð51Þ

for which the analytic expression of the gradient is
onu
oxn
ðj; l; xÞ ¼ ðijÞneðijxÞ þ ðilÞneðilxÞ ð52Þ
Although a modified wavenumber cannot longer be defined in this approach, it is still possible to obtain a
transfer function of the resulting schemes. The transfer function at random position x = xi is defined as
Gðj; lÞ ¼
dn�u
dxn ðj; l; xiÞ
�� ��
onu
oxn ðj; l; xiÞ
�� �� ð53Þ
Fig. 3 shows the transfer functions for the second- and sixth-order schemes and also for the dynamic proce-
dure with blending factors f = 1 and f ¼ 1

5
. It can be noticed that the full dynamic procedure has a similar

behaviour like in the single-wave analysis, as it leads again to singularities for certain combinations of the
wavenumbers j and l. However, decreasing the blending factor to values within the range f 2 1

5
; 1

3

� �
improves

the performance of the dynamic procedure. Because the interpretation of the transfer functions in Fig. 3 is
rather difficult, an order estimation is done to measure the performance of the dynamic procedure at the values

f ¼ 1
3
; 1

4
; 1

5

� �
. Results are presented in Fig. 4. It can be seen that the conclusions drawn in the single-wave anal-

ysis hold for the double-wave analysis. For f ¼ 1
5

the dynamic procedure reaches sixth-order accuracy for the
lower part of the wavenumber space, whereas at higher wavenumbers the accuracy drops to approximately
fifth order. For f ¼ 1

4
or even f ¼ 1

3
better accuracy for high wavenumbers can be obtained but at the cost

of the low wavenumbers, which still obtain at least fourth order. Considering the fact that we will only sim-
ulate laminar flows, we are now able to propose a blending factor f ¼ 1

5
for further study, such that the accu-

racy order is as high as possible for the lower wavenumber part.

3.5. Grid-convergence

The investigation of the dynamic procedure in Fourier space lead us to conclude that one can obtain higher-
order accuracy by using a dynamic scheme (49), with an appropriate value of the blending factor f. In view of



Fig. 3. Multiple-wave analysis for ou
ox: (a) Gðj;lÞ for a second-order scheme; (b) Gðj;lÞ for a sixth-order scheme; (c) Gðj;lÞ for the

dynamic procedure (f = 1); (d) Gðj;lÞ for the dynamic procedure ðf ¼ 1
5
Þ.
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the applications presented in this work, we have chosen f ¼ 1
5

in order to optimise the accuracy at the lower
wavenumber range of the spectrum. In this paragraph we will focus on the behaviour of the dynamic proce-
dure (with f ¼ 1

5
) in physical space. More specifically we will conduct a grid-refinement study of the dynamic

procedure applied on the discrete gradient.
Consider the periodic function
uðxÞ ¼ sinðxÞ þ sinð2xÞ þ sinð4xÞ ð54Þ

defined in the periodic domain x = [0, 2p]. Since, the analytical derivative ou

ox is known, we can define three
standard norms to represent the discretization error of the discrete derivative on a grid with n nodes and grid
spacing D
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L1 ¼
1

n

Xn

k¼1

ou
ox

� �
x¼xk

� d�u
dx

� �
x¼xk

�����
����� ð55Þ

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

ou
ox

� �
x¼xk

� d�u
dx

� �
x¼xk

 !2
vuut ð56Þ

L1 ¼ max
ou
ox

� �
x¼xk

� d�u
dx

� �
x¼xk

�����
����� ð57Þ
The L1-norm represents the mean absolute error in the domain, the L2-norm is related to the standard devi-
ation r of the error, i.e. L2

2 ¼ L2
1 þ r2, and finally the L1 gives the maximum value of the absolute error in the

domain. These error norms are presented for six different implementations of the dynamic procedure in Fig. 5
as function of the grid spacing D ¼ 2p

n�1
while refining the grid from n = 24 to n = 29. In the left column in

Fig. 5, ck has been evaluated in every fine-grid point, while in the right column ck has been evaluated at
the coarse grid level. In Fig. 5a and b we calculated the dynamic coefficient as ck ¼ L

M, while in Fig. 5e and
f, a constant coefficient was obtained through a least-square approximation ck ¼ hLMi

hMMi. For the two remaining
Fig. 5c and d, an intermediate approach was followed by calculating the dynamic coefficient as a three point
moving average ck ¼ hLMima

hMMima
. It can be seen from Fig. 5a that the dynamic procedure with the pointwise eval-

uation of the coefficient in every fine-grid point indeed obtains sixth-order accuracy for all norms, although we
notice a weak scattering of L1 for the lower grid resolutions. Pointwise coarse grid evaluation of the dynamic
constant leads to strong scattering of L1, as well as for L1 and L2. Closer investigation learns that the main
trend for the L1-norm remains sixth order, while for the L2-norm fifth-order accuracy is obtained. For the L1-
norm only fourth order could be reached. From the implementation using a least-square approximation for
the constant coefficient, no difference can be distinguished between the fine-grid or coarse grid evaluation
of the dynamic constant. We see that this rather rough approximation leads for both evaluations to a loss
in order: the procedure tends to fifth order for coarse grids, but for the finer grids, the curves deflect to fourth
order. This applies for all error norms. The observed deflection most likely finds its cause in the weak non-
linearity of the dynamic coefficient, which is of order OðDkÞ, and thus gets more important when decreasing
the grid resolution. Nevertheless, we notice from the Fig. 5e and f that, although the order is lost, the error
levels produced by the procedure are still smaller than those of the fourth-order scheme. Similar results are
seen when using the moving average approach presented in Fig. 5c and d. The main trend for the L1-norm
is almost sixth order, while for the L2-norm approximately fifth-order accuracy is obtained. The L1-norm
reaches again fourth-order accuracy. Like in the least-square approach, we notice a deflection of the curves
as they tend to higher-order slopes for coarser grids. Moreover, the overall error level is again lower than that
of the fourth-order scheme. To conlcude this paragraph, the dynamic procedure seems to be an optimization
procedure that tries to minimize the local truncation error. For any simplification or restriction made to the
ltiple-wave analysis for
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Table 1
Overhead percentages of the different schemes

Second (%) Fourth (%) Sixth (%) Eighth (%) Tenth (%) DP (%)

0 1.73 3.45 5.11 6.68 26.05
�3.34 �1.67 0 1.60 3.12 21.85

First row normalised to second-order scheme; second row normalised to sixth-order scheme.
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calculation of the dynamic coefficient (least-square, moving average), there is a price to pay in terms of quality,
but although the order reduces, the overall error is still minimized.

3.6. Computational cost

Comparing the computational cost of the dynamic procedure with a traditional finite difference method is
rather complicated as it highly depends on the efficiency of the implementation and on the programming
environment. Therefore it may be more useful to adopt a more basic point of view by looking at the number
of (additional) operations. It can be understood from equation (47) that the evaluation of the higher-order
term OðDkÞ in the dynamic coefficient, which clearly ensures the higher-order behaviour of the procedure,
will be responsible for an additional cost of the dynamic procedure. How severe that cost is, mainly depends
on the implementation of ck. It is obvious that calculation of ck on the coarse grid followed by a simple inter-
polation to the fine grid, takes less computational time in comparison with a full evaluation of ck on the fine
grid. However, if ck is calculated using a least-square method or a moving average method, the computa-
tional cost will not only be determined by some extra arithmetic operations, but, mainly by the implemen-
tation efficiency of these techniques. This makes it difficult to accurately predict the computational cost. For
these same reasons, we decided to restrict ourself to a simple numerical experiment in which only the cost of
the dynamic procedure with the pointwise evaluation of ck on the fine grid was compared to the cost of the
traditional finite difference schemes. In this way, no ambiguities arise due to interpolations or averaging tech-
niques, but only the cost of additional arithmetic operations is accounted for. In the experiment the compu-
tational time was measured for the evaluation of the gradient with different schemes. However, it should be
noticed that a high-level programming language was used with low-level efficiency. The overhead compared
to the second-order scheme and to the sixth-order scheme is displayed in Table 1. The pure dynamic proce-
dure seems to have an 22% additional cost compared to the sixth-order scheme, independent of the value of
the blending factor. From a theoretical point of view, evaluating ck on the coarse grid is expected to be much
less expensive as only half of the operations is needed. It may be worthwhile to mention that although the
procedure has an additional cost on a single grid evaluation, the additional cost in a multigrid environment
is quasi nil, as solutions on several grid levels are then fully available. In this case, extrapolation methods in
general are very attractive.
4. Modelling the truncation error of the Navier–Stokes equations

4.1. Exact truncation error model

Instead of evaluating a truncation correction for every separate derivative in the Navier–Stokes equations,
which is straightforward, we would like to know if we could increase the accuracy of the discretization by
using one model for all truncation errors together, like in the philosophy of [7]. Argueing that the leading
terms of the Taylor series expansion are the most important (being the largest source of error), we take them
as the basic modelling ingredients, and rewrite (13) and (14) as
PD1 ¼ 1
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o5ui

ox5
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ox3
i

 !�1
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RD1
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ð59Þ
We now make the assumption that to a certain degree of accuracy we can merge the different series between
the brackets in (59) into the vector field Cr

i . Similarly denoting the terms between brackets in (58) by the scalar

field Cp, we obtain as modelling basis
PD1 ¼ CpDx2
i

d3�ui

dx3
i

ð60Þ

RD1
i ¼ Cr

i �ujDx2
j

d3�ui

dx3
j

þ Dx2
i

d3�p
dx3

i

� m
2

Dx2
j

d4�ui

dx4
j

 !
ð61Þ
For a 2D flow, this results in
PD1 ¼ Cp Dx2 d3�u
dx3
þ Dy2 d3�v

dy3


 �
ð62Þ

RD1
u ¼ Cr

u Dx2 �u
d3�u
dx3
þ d3�p

dx3
� m

2

d4�u
dx4

� �
þ Dy2 �v

d3�u
dy3
� m

2

d4�u
dy4

� �
 �
ð63Þ

RD1
v ¼ Cr

v Dx2 �u
d3�v
dx3
� m

2

d4�v
dx4

� �
þ Dy2 �v

d3�v
dy3
þ d3�p

dy3
� m

2

d4�v
dy4

� �
 �
ð64Þ
This model in which Cr
i and Cp are obtained dynamically, is closely related to the exact expression of the trun-

cation error for a second-order accurate discretization, and therefore we call it the exact truncation model.
Adopting values Cp ¼ 1

6
and Cr

i ¼ 1
6

one obtains a fourth-order accurate discretization. The major drawback
of the model is the requirement of a broader 5-point stencil to evaluate the third- and fourth-order derivatives.
This can be very unpleasant near walls, where even excentric 6-point stencils (also second-order accurate) have
to be constructed to maintain the overall accuracy. It would be more convenient if the higher-order derivatives
could be reduced to maximum second order, the highest appearing order in the physical Navier–Stokes
equations.

4.2. Smagorinksy-like models

The idea behind the reduction of the high-order derivatives for modelling purposes, is based on the obser-
vation that the Taylor series of the finite difference approximation of an odd order derivative contains only
odd higher-order derivatives, whereas the Taylor series of an even order derivative contains only even
higher-order derivatives. More specificly, higher-order derivatives appearing in the analytical Taylor series
of a central finite difference approximation of the derivative display a similar behaviour as the derivative itself,
although they do not have the same scaling. In short, all odd (respectively even) order derivatives behave more
or less similarly. Here we propose to approximate the higher-order derivatives by an appropriate non-linear
combination of lower-order ones, taking the above observations into consideration. Therefore we adopt the
following modelling approximation (no summation):
�ui
dn�ui

dxn
j
� dp�ui

dxp
j

 !
dq�ui

dxq
j

 !
ð65Þ
in which (p + q) = n. If n is even, p and q should both be even. If n is odd, then p should be even and q should
be odd, or vice versa. This reduction can be applied repeatedly, such that actually every high-order derivative
may be reduced to a combination of first and second-order derivatives, properly rescaled with �ui.
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If n = 3, and if we choose p = 1, q = 2, a Smagorinsky-like approximation appears. The convective terms in
(59) will be modelled through (65) as
�uj
d3�ui

dx3
j

� �uj

�ui

d�ui

dxj

d2�ui

dx2
j

ð66Þ
The disadvantage of this model is that a division by �ui appears, which will inevitably lead to singularities, as �ui

can be zero. Therefore, we propose the following Smagorinsky-like model for the convective terms
RD1
i;conv ¼ Cr	

i Dx2
j uj

d�ui

dxj

d2�ui

dx2
j

ð67Þ
in which the dimensional field Cr	
i ¼

Cr
i

�ui
is calculated dynamically.

Further approximations can be made by assuming that
�uj

�ui
� 1, and by taking the absolute value of the first-

order derivative. One then obtains an expression very close to the classic Smagorinsky subgrid model
�uj
d3�ui

dx3
j

� d�ui

dxj

���� ���� d2�ui

dx2
j

ð68Þ
leading to a second model for the convective terms in a Smagorinsky-like way
RD1
i;conv ¼ Cr

i Dx2
j

d�ui

dxj

���� ���� d2�ui

dx2
j

ð69Þ
in which the dimensionless field Cr
i is calculated dynamically. In both Smagorinsky-like models an additional

approximation is made by giving all approximated terms in the model the same coefficient.
For the truncation error of the continuity equation (58) and the pressure terms and the viscous terms in the

momentum equations, the modelling hypothesis (65) does not lead directly to a suitable Smagorinsky-like
model. Therefore, we decide to either leave the exact truncation error models in their original forms for these
terms, or to neglect them completely. The latter may be justified for the pressure and viscous terms in the
momentum equations as we expect the convective terms to be dominant. There is less justification for neglect-
ing the truncation error in the continuity equation. This hypothesis will be verified in the test cases.

For a 2D flow the first Smagorinsky-like model is
PD1 ¼ Cp Dx2 d3�u
dx3
þ Dy2 d3�v

dy3


 �
ð70Þ
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ð72Þ
and the second Smagorinsky-like model is
PD1 ¼ Cp Dx2 d3�u
dx3
þ Dy2 d3�v

dy3
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ð73Þ
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ð75Þ
5. Simulations and results

In order to evaluate the numerical qualities of the dynamic procedure, in the absence of possible interac-
tions caused by turbulence modelling aspects, we choose to test it on a laminar flow. We first analyse the
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method on a 1D convection–diffusion equation. Then we study the more complex flow of a 2D-driven cavity at
Reynolds number Re = 400. We use intentionally a uniform grid to avoid any ambiguity toward the dynamic
procedure.

5.1. 1D convection–diffusion equation

5.1.1. Case setup

The continuum convection–diffusion equation defined in the physical domain X ¼ ½0; L� � R, supplemented
by a set of Dirichlet boundary conditions, reads
Fig
ou
ox
¼ m

c
o2u
ox2

uð0Þ ¼ u0

uðLÞ ¼ uL

ð76Þ
Here c is the convective speed and m the viscosity. Defining the Péclet number Pe ¼ L
j, with j ¼ m

c (Pe is the one-
dimensional equivalent of the Reynolds number), the analytic solution of the convection–diffusion equation
reads
uðxÞ ¼ u0 þ ðuL � u0Þ
1� e

x
j

1� ePe
ð77Þ
and is displayed in Fig. 6.
Projecting the continuum equation (76) from X to the uniformly spaced grid XD1 ¼ fx1 ¼ 0; . . . ; xN ¼ Lg,

with xl 2 X and grid spacing Dx, leads to the discretized equation
d�u
dx
¼ j

d2�u
dx2
þ RD1

�uðx1Þ ¼ u0

�uðxN Þ ¼ uL

ð78Þ
with RD1 the truncation error depending on the discretization scheme. We propose for RD1 the basic form
RD1 ¼ jt
dn�u
dxn

ð79Þ
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Table 2
Overview of the different simulations of the convection diffusion equation for a second-order central discretization

Code RD1
i jt n

cd.a 1
6 Dx2 o3u

ox3 � j
12 Dx2 o4u

ox4 CrDx2 3

cd.b 1
6 Dx2 o3u

ox3 � j
12 Dx2 o4u

ox4 Cr Dx2

j 2

cd.c 1
6 Dx2 o3u

ox3 � j
12 Dx2 o4u

ox4 CrDx 2

cd.d 1
6 Dx2 o3u

ox3 � j
12 Dx2 o4u

ox4 Cr Dx2

c j d�u
dx j 2
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An overview of the tested models for a second-order central discretization of both the convective and diffusive
terms is given in Table 2. Models cd.a and cd.b are related to the exact truncation error model. Note that for
Cr ¼ 1

12
an exact fourth-order accuracy is reached for model cd.a. Because of the relation
ou
ox
¼ j

o2u
ox2
¼ j2 o3u

ox3
¼ j3 o4u

ox4
¼ . . . ð80Þ
models cd.a and cd.b are analytically fully equivalent:
RD1 ¼ 1

6
Dx2 o3u

ox3
� j

12
Dx2 o4u

ox4
ð81Þ

¼ 1

6
Dx2 o3u

ox3
� 1

12
Dx2 o3u

ox3
ð82Þ

¼ 1

12

Dx2

j
o

2u
ox2

ð83Þ
This artifact is only present in this simple linear problem. It allows us to investigate the effects of broader sten-
cils and their evaluation at the wall. Inconsistencies appear when evaluating the stencils at different grids (XD1

and XD2 ) in near wall nodes, because of the use of excentric stencil formulations respecting the general order of
accuracy. This is shown schematically in Fig. 7, where the 3rd derivative evaluated at the coarse grid near wall
node has different stencils on the coarse and the fine grids. As a consequence, an incorrect value for Cr is gen-
erated in the first coarse grid node near the wall and the wall node itself if n P 3. Therefore these values cannot
be used for interpolation to the fine grid. In order to avoid these anomalies we extrapolate L and M in the
affected points. A piecewise cubic Hermite extrapolation is used. We like to emphasize that we intentionally
include the inconsistent model cd.c, with incorrect order of accuracy, and the Smagorinsky-like model cd.d,
which does not correspond completely to the hypothesis (65), in order to investigate the robustness of the
method. In this test case, no least-square averaging method was used to calculate Cr. Thus, Cr ¼ L

M.

5.1.2. Results and discussion
Simulations are performed on a uniform mesh with 50 cells and 100 cells. The adopted parameters are

c = 0.1, m = 0.1, L = 10 so that Pe = 10. We define the pointwise error in the domain as
Fig. 7. Inconsistency of the procedure near walls.
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euðxÞ ¼ juðxÞ � uanalyticðxÞj ð84Þ

Furthermore, we investigate the order of accuracy through the previously defined error norms L1, L2 and L1
obtained from a grid-refinement study using the model cd.a. The results presented in Figs. 8 and 9 are within
the expectations for this simple linear problem.

It can be seen from both graphs that the dynamic procedure with the quasi-theoretical model cd.a and f ¼ 1
5

obtains much higher accuracy than the fourth-order solution, however, it does not display a consistent higher-
order convergence in the grid spacing. The order of convergence for the error norms L1, L2 and L1 displays a
deflection from fourth to sixth order when going from fine to coarse grids especially with a blending factor
f ¼ 1

4
. Moreover, it can be seen that although the proposed optimal blending factor f ¼ 1

5
gives a significant

accuracy improvement compared to the fourth-order solution, a blending factor of f ¼ 1
4

leads to even better
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results in this case. Nevertheless, we believe that this coincidence cannot be generalized. The reason for the
deflection of the convergence-slopes is twofold. On the one hand we transformed the current model cd.a using
the analytical equation into a reduced form, while on the other hand we assumed one dynamic coefficient for
the complete truncation error. Most likely the second assumption is the most dominant because the optimized
dynamic coefficient of the first derivative is not necessarily the same as the optimized dynamic coefficient of the
second derivative in the equation. This means that for the finer grids, the misfit between both virtual coeffi-
cients is more severe while for the coarser grids, the optimization procedure succeeds in finding a minimal
common higher-order term OðDkÞ in the dynamic coefficient for the complete truncation term. This also means
that the influence of the higher-order term OðDkÞ in this coefficient is increasingly important with D such that a
sixth-order slope is reached. Further, the differential Richardson extrapolation (f = 0) obtains fourth-order
accuracy approximately. The classical Richardson extrapolation, combining two resolved solutions on two
different grids, seems to be less accurate than the fourth-order solution, and displays a very irregular behav-
iour. The analytically reduced model cd.b reaches only fourth-order accuracy, although it is equivalent to cd.a.
This can be explained by the fact that the stencils used in cd.b are smaller than those of cd.a. Further it can be
seen from the poor results of model cd.c that the leading order in the grid spacing should be respected. The
Smagorinsky-hypothesis (65) seems to be justified as the results of model cd.d clearly show. Only some small
loss of accuracy with respect to model cd.a is observed. Finally if f = 1, rather poor results are obtained with
model cd.a, as could be expected from the spectral analysis. It can be seen that the value of Cr for the models
cd.a and cd.b are constant and close to the theoretical value Cr ¼ 1

12
. However, for the Smagorinsky-like model

cd.d, Cr does not remain constant, but shows an exponential-like behaviour. We divided the Smagorinsky-like
model by the constant convective speed c to obtain the dimensionless parameter Cr. This is however not jus-
tified in the philosophy of the modelling hypothesis (65), as we should have divided it by the transported quan-
tity �u itself. Consequently, Cr compensates for 1

u, which explains the displayed behaviour.

5.2. 2D lid-driven cavity

5.2.1. Case setup

In the driven cavity, an internal recirculating flow is generated by a uniform moving wall in a 2D square
closed domain (Fig. 10). The flow is representative for more complex situations with vortices and secondary
flows, and is a challenging test case. On each wall, impermeability conditions and no-slip conditions are
imposed. This implies that the fluid is supposed to move with the lid at the lid, and that it is stationary at
the two side walls and the bottom wall. This leads to so-called corner singularities at both top corners due
to the discontinuity in the imposed boundary conditions.

A pseudo-compressible code is used with a third-order Runge–Kutta method for stepping in pseudo-time.
Spatial discretization is second-order central for all terms. The pressure field is extrapolated at the wall using
the fourth-order accurate Neumann condition o3p

on3 ¼ 0 with n the wall-normal direction, and the mean value is



Fig. 10. Geometry of the square lid-driven cavity.
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kept at zero. The Reynolds number, based on the height and lid-velocity is Re = 400, for which the flow is
laminar. The governing equations in the physical domain X ¼ ½0; L� 
 ½0; L� � R2, read:
Fig. 11
field.
1

b2
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ot
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ð86Þ
with b the artificial speed of sound. The Dirichlet boundary conditions are ui = 0 on C1 en ui = ulid on C2. Pro-
jecting the continuum equations from X to the discrete mesh XD1 ¼ fx1 ¼ 0; . . . ; xNx ¼ Lg 
 fy1 ¼ 0; . . . ; yNy

¼ Lg, with {xl,yl} 2 X and uniform grid spacings Dx and Dy, leads to the discretized equations
1

b2

d�p
dt
þ d�ui

dxi
¼ PD1 ð87Þ
. Sixth-order reference solution on a 180 · 180 grid: (a) vector field and contours of velocity magnitude; (b) contours of pressure
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dxi
þ m

d2�ui

dx2
j
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i ð88Þ
Although an artificial dissipation is generally required in the continuity equation to damp the wiggles gener-
ated by the central scheme, no dissipation has been implemented here, in order to avoid possible interference
with the dynamic model. Therefore, the fields contain a minimal spurious pressure mode that however does
not affect the velocity results. The exact truncation errors are given in previous paragraphs. As no analytical
solution is available, we use a sixth-order central scheme on a 180 · 180 mesh, to generate the reference solu-
tion. The flow pattern of the reference solution is given in Fig. 11. Cross-section profiles of the reference solu-
tion and a second-order solution on a 60 · 60 mesh are shown in Fig. 12. It can be noticed that both solutions
are very close to each other. For this test case, the error for a variable / is defined as
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Table 3
Overview of the different simulations in the square lid-driven cavity

Code Continuity Momentum

Convective Pressure and viscous

ldc.2o60·60 Second-order central Second-order central
ldc.4o60·60 Fourth-order central Fourth-order central
ldc.6o60·60 Sixth-order central Sixth-order central
ldc.1a60·60 Exactþ f ¼ 1

5 Exactþ f ¼ 1
5

ldc.1b60·60 Exact + f = 1 Exact + f = 1
ldc.1c60·60 None Exactþ f ¼ 1

5

ldc.2a60·60 Exact Exact + conv. Leonard None
ldc.2b60·60 Exact Exact + full Leonard None
ldc.3a60·60 Exact Smagorinsky 1 Exact
ldc.3b60·60 Exact Smagorinsky 1 Fourth order
ldc.3c60·60 Exact Smagorinsky 1 None
ldc.3d60·60 Exact Smagorinsky 2 None
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e/ ¼ /reference � /resolved ð89Þ

The different simulations are given in Table 3. Using the exact truncation error model in combination with the
dynamic procedure, a global least-square averaging over the whole field was chosen for Cp and Cr. This is
justified because of the uniform grid and because the basic behaviour of Cp and Cr is expected to be approx-
imately uniform (close to the theoretical value of 1

6
). For the Smagorinsky-like models however, we use a local

least-square averaging over a 3 · 3 subdomain. For the first Smagorinsky-like model a clipping to Cr > �0.2,
to prevent excessive negative values of Cr, was necessary. For the second Smagorinsky-like model a clipping to
Cr > �0.16 was necessary. For all models, including the Smagorinsky models, a blending factor f ¼ 1

5
as in

formula (49) was used, unless stated otherwise.

5.2.2. Results and discussion

The results for the cross-sections x ¼ L
2

and y ¼ L
2
, which are given in Figs. 13–16, correspond to the general

expectations. First, it can be seen from Fig. 13 that the classical Richardson extrapolation (ldc.RE60·60) does
not reach the accuracy of the fourth-order solution, unlike the differential form (ldc.DRE60·60), which obtains
approximately fourth order. This indicates that the classical Richardson extrapolation does not seem to be
very reliable compared to its equivalent differential form. Probably this has to do with the fact that the dif-
ferential form satisfies the set of differential equations unlike its classical counterpart. As expected, the
dynamic procedure, with the exact truncation model (ldc.1a60·60) and the optimal blending factor of 1

5
lies very

close to the sixth-order solution, as shown in Fig. 14. In contrast to the 1D test case, using a full dynamic
procedure with a blending factor f = 1 (ldc.1b60·60), still leads to good results, although a slight loss of accu-
racy can be noticed in high-gradient regions. If the continuity equation is not corrected (ldc.1c60·60), a signif-
icant loss of quality is observed, due to the apparently large error on the mass balance. Therefore, from now
on we use the exact truncation model for the continuity equation. To examine whether the convective terms
are dominant in the modelling of the truncation error, we performed two simulations in which the contribu-
tions of the pressure term and the viscous term in the model are neglected. For the first case (ldc.2a60·60) the
viscous terms and the pressure terms are not used in the evaluation of the Leonard term. In the second case
(ldc.2b60·60), all contributions are maintained, so the complete momentum equations are used in the Leonard
term. Thus, in the latter case, we implicitly assume that the model of the convective term can account for the
overall error. In other words, we merge the correction for pressure and viscous terms into the convective part.
It can be seen from the results of ldc.2b60·60 in Fig. 15 that such an assumption is not justified. Nevertheless,
case ldc.2a60·60 leads to good results. This indicates that the convective terms are dominant, and that correc-
tion of these terms gives a significant quality improvement. This led us to further investigate Smagorinsky-like
approximations for these non-linear terms. Results of such different Smagorinsky-like models are shown in
Fig. 16. It can be seen that the first Smagorinsky model, in which the dynamic field is dimensional, yield rea-
sonable results if the contributions of the viscous term and the pressure term are accounted for, whether with
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an exact dynamic procedure, or an exact fourth-order implementation. However, if only the Smagorinsky
model is used without a model for pressure and viscous terms, the results become less accurate. Taking the
second Smagorinsky-like model, in which the non-dimensional field is obtained dynamically, results are again
good, even without correction for the pressure terms and the viscous terms. This points out that it is not fully
justified for the procedure to obtain a dimensional dynamic field, probably because this field cannot be
assumed as grid independent.

To complete this work, a final grid-refinement study on the error norms was done, using the grid resolutions
120 · 120,90 · 90,60 · 60 and 30 · 30. Results are shown in Fig. 17. First it can be seen from the L1-norm,
which is the most natural error norm, that although we implemented up to a sixth-order accurate scheme,
results only display at maximum a slope of 4, the sixth-order scheme included. The reason behind this some-
what masked result is most likely the implementation of the boundary conditions of the pressure field. The
fourth-order accurate Neumann condition o3p

on3 ¼ 0 for the pressure field causes that the pressure field cannot
exceed fourth order at the walls of the cavity where the pressure gradients are very large. This makes for
instance that the L1p remains approximately constant in the grid spacing. The maximum error of the pressure
field is situated in the corner singularity at the wall of the cavity. Consequently it is obvious that also the veloc-
ity components are affected by this restriction, such that the corresponding error norms does not display a
sixth-order slope. Nevertheless the error is still smaller than that of the fourth-order scheme. These observa-
tions make it rather difficult to judge correctly the grid-refinement study. From the L1-velocity norms it seems
that the dynamic procedure combined with the exact model obtains higher accuracy than the fourth-order
solution, even as good as the sixth-order solution, but only for the coarser grids up to 60 · 60. However,
for the finer grids, one can observe again a deflection making the accuracy somewhat lower than the
fourth-order solution. This trend is not seen in the L2-velocity norms, where the lowest accuracy of the pro-
cedure is still that of the fourth-order solution. Also from the L1 and L2 pressure norms it clearly seems that
the procedure has the same performance as the fourth- and sixth-order schemes. The reason for the slope-
deflection should again be found in the approximations made in the model. We assumed in the exact trunca-
tion model, that all dynamic coefficients of each derivative could be merged into one dynamic coefficient for
Fig. 17. Error norms L1, L2 and L1 for the second order (s), fourth order (}), sixth order (·) solutions and the dynamic procedure with
f ¼ 1

5
(n): a, b, c give the errornorms for u-velocity (–) and v-velocity (- Æ -); d, e, f give the error norms for the pressure field.
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each equation, which is optimized by the procedure using least-squares. Of course, for the finer grids correc-
tions are more subtile than for coarse grids, making it more difficult for the procedure to find one optimal
common least-square coefficient. The best the procedure can do is then approximately fourth-order accuracy.
For the coarse grids however, the procedure can make a difference by finding one optimal common least-
square coefficient, because the relative importance of a high-order correction in the coefficient becomes larger
with the grid spacing. It is obvious that the more approximations one makes in the modelling or in the pro-
cedure, the less gain in accuracy can be obtained.

6. Conclusions

Discretization errors in numerical simulations should be small in order to provide sufficient accuracy. Com-
plexity of high-order schemes, or the computational cost of fine meshes (in combination with low-order
schemes) are often prohibitive in computational fluid dynamics. In this work, we presented the sampling-based
dynamic procedure as a tool to enhance numerical accuracy, which is a compromise between stencil-complex-
ity and computational cost. The proposed technique uses two different grid resolutions to estimate and correct
the truncation error. After introducing the general theory, the relationship of the dynamic procedure with
Richardson extrapolation was shown. Moreover, a spectral analysis of the dynamic procedure for both a sin-
gle wave and a double wave shows its capability of increasing the accuracy of a finite difference discretization
with several orders. Application of this technique to a 1D convection–diffusion equation and a square-driven
cavity demonstrates the potential, and confirms the theoretical findings. In the following we summarize the
main conclusions obtained in the present research.

(i) The sampling-based dynamic procedure can be used as a technique to improve the numerical quality of a
discretization scheme. The dynamic procedure applied to a second-order central discretization of a deriv-
ative results in a sixth-order accurate scheme for a blending factor of f ¼ 1

5
. Varying this blending factor

allows one to optimize the scheme for higher accuracy of certain intervals in the wavenumber range. The
complexity of implementing the stencils is limited to that of a fourth-order discretization. The method
may be particularly interesting in the context of multilevel algorithms because it is based on discretiza-
tions on multiple grid resolutions. Therefore, it may be a natural supplement of multigrid-like methods,
with minimal additional computational cost.

(ii) The dynamic procedure applied to a second-order central discretization of a complete partial differential
equation in combination with an exact truncation error model, results in a significant gain in accuracy, at
least better than a fourth-order scheme. The procedure then acts like an optimization procedure by min-
imizing the local truncation error. The procedure is liable to certain assumptions or simplifications made
in the procedure and/or the truncation error model. This leads to a small loss in quality, for instance the
slope of grid-convergence is not fully maintained. These observations seem to be relatively more impor-
tant for fine grids, whereas for coarse grids the optimization has a more pronounced and positive effect.

(iii) It was shown that both the classical and differential Richardson extrapolations are special formulations
of the technique, with an additional approximation. Results of the classical form where found to be dis-
appointing compared to those of its differential counterpart. The differential Richardson extrapolation
obtains fourth-order accuracy, whereas the classical Richardson extrapolation does not get to fourth-
order accuracy.

(iv) A severe loss of quality is observed if the truncation error of the continuity equation is not corrected.
Moreover, it is observed that the truncation errors of the convective terms in the momentum equations
are dominant, and accounting for these terms only, leads to good results.

(v) Using a modelling hypothesis, the higher-order derivatives in the truncation errors of the convective
terms in the momentum equations were reduced to a product of lower-order derivatives, resulting in
a Smagorinsky-like models for these terms. Consequently, one avoids the complexity of evaluating
high-order derivatives. The dynamic procedure, in combination with a Smagorinsky-like model for
the truncation error of the convective terms still leads to a significant accuracy improvement. However,
lower quality compared to the use of the exact truncation error model was observed, as no full fourth
order could be reached. Still, results are remarkably better than second-order solution.
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